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SUMMARY

This report discusses a combined analytical and experimental research
Program to evaluate the trim conditions and dynamic stability characteristics
of a proposed AERCCRANE heavy 1ift vehicle in hovering and forward flight,
using a free-flight Froude scale model.
Pursuant to the conclusions and recommendations of previous analytical
and experimental hovering investigations reported in Reference 1, the model «
and model systems were revised and modified to allow safe and well-comtrolled

o experimental investigations in hover and forward flight. The principal
| modifications and revisions involved implementation of a stability aug- ]
mentation system and provision for achieving a fully bucyant non-rotating
state for flight safety.

Prior to actual flight testing a theoretical model for prediction of

alrcraft trim conditions in forward flight was developed. Linearized

PN
¢

equations of motion for dynamic stability were extended to include forward

flight, and the influgnce of a sling load as well as the umbilical cable

associated with the free-flight model.

Hovering and forward {light experiments were conducted in Hangar No. 1

at the Naval Air Engineering Center, Lakehurst, N, J., and the data from

these investigations were used to corroborate the analytical models for trim

and dynamic stability. The results of this comparison indicate that

o e —— e

the analytical models provide very good predictions of the trim and dynamic

stability characteristics of the AEROCCRANE model.
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NOMENCLATURE
angle of attack rotation matrix
rotor blade 1ift curve slope, per rad.
acceleration vector
longitudinal cyclic pitch, referenced to gondola axes,

deg or rad.

sideslip rotation matrix

number of blades, b = L

lateral cyclic piteh, referenced to gondola axes, deg or rad. 4
blade chord, ft, ¢ = 2.3 ft.

damping matrix

drag coefficient of centerbody, C, = —2 ;
% () v2 ﬂRi ]

H

rotor in-plane force coefficient, Cy = ———————u—
P nR2 (Qr)?

L
o "R® (QR)® R

rolling moment coefficient, C, =

magnus force coefficient of centerbody,
Ly
Fun 4 p V2 RS
M

P wR3 Qr)2 R

pitching moment coefficient, Cy =

thrust coefficient, CT = z
p nR3 (QR)3

Y
p mR?® (QR)?

rotor lateral force coefficient, C, =




|
z
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sphere drag force, lbs.

control matrix

buoyant force, lbs.

Magnus force, lbs.

rotor radial station. factors, fy =1 ~ xn

rotor in-plane force, rotor axis system, positive to the
rear, lb.

stability derivatives divided by m’ and I’ respectively

vehicle moment of inertia about x4 and y, axes, including
apparent mass contribution, slug ft2

vehicle moment of inertia about z, axis, slug ft2

proportionality constant between harmonic inflow and
rotor aerodynamic moment

spring matrix

attitude feedback gain, rad/rad/ or deg/deg

rotor hufb rolling moment, rotor axes, ft-1lb,

total rolling moment, shaft axes, positive right side down, ft-1b.

sum of mass of vehicle and apparent mass, slugs
apparent mass of vehicle, calculated for centerbody only, slugs

effective mass of umbilical cable, slugs

sling load mass, slugs

vehicle mass, slugs

total pitching moment, shaft axes, positive. nose up,

ft-1db.
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rotor bub pitching moment, rotor axes, ft-1b., mass matrix
load attachment point position vector

load center of gravity position vector

roll rate, positive right side down, rad/sec

pitch rate, positive nose up, red/sec

distance between center of buoyancy and center of gravity,
positive for center of gravity below center of buoyancy, ft.
rotor radius, ft.

load reaction force vector

centerbody radius, ft.

Laplace operator

stability augmentation system

time

rotor thrust, rotor axis system, positive up, 1lbs.

horizontal velocity (along x, axis), positive forward, ft/sec.
¢
component velocity along x axis, ft/sec.

velocity vector

trim flignt velocity, fps, V=JU> + W2

component velocity along y axis, or induced velocity, ft/sec.
volume of centerbody, ft3

component of velocity along z axis, ft/sec.

total lifted weight of model including sling load

and umbilical cable weight, 1b, W = W,  + Wy + Wc

vertical velocity (along z, axis), positive downward, or

model weight, lbs.
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rotor wake angle measured from vertical, column vector
rotor side force, rotor axis system, positive right
lateral force, body axes, positive to right, 1lb.
distance from load attachment point to vehicle center

of gravity, ft.

rotor angle-of~attack

gondola sideslip angle, positive for vehicle motion

to the right

phase angle for stability augmentation, positive clockwise
fram top é
rotor blade pitch angle. Referenced to wind axes,

9=9°-A1ucosta-31“sinh..
Referenced to gondola axes, 8 = 90 =~ Ayg cOS ¥ - Byg sin ¥4

vehicle pitch angle, positive nose up, rad

rotor é&ollective pitch, rad

pitch rotation matrix

rotor inflow ratio, positive for flow up through rotor
cogine component of dimensionless induced velocity due to
blow back, Ag = 1, X

harmonic inflow components due to rotor aerocdynamic

2c, 2c,
pitching and rolling moments, Ay = J ==, Ay = = J v

rate of change of cosine component of induced velocity with

radius due to "blow back", dimensionless

vili




Subscripts

(
( e
(e
( n
()

(),
(*)

()Y, (Y

rotor advance ratio
density of air, slugs/ft3

be
rotor salidityoc R

vehicle roll angle, positive right side down, rad

roll rotation matrix

blade azimnth angle, ¢, is measured from downwind, ¥, is
measured from gondola reference axes, positive in direction

of rotor rotation, or yaw rotation matrix

' I
nutation frequency, @, = —'z- R, rad/sec
' I

Fg r
2, rad¥/sec?

square of pendulous frequency, wy® = -
I

uncoupled sling load pendulous frequency, wy, = -ZE- , rad/sec
" L

rotor/centerbody angular velocity, RPM or rad/sec

Ry

’
ratio of centerbody radius to rotor radius, x = T

referenced to attachment axis system
referenced to body axis system
referenced to gravity axis system
referenced to rotor axis system

referenced to shaft axis system

referenced to wind axis system
differentiation with respect to time

intermediate axis systems




INTRODUCTION

This report presents the results of a combined analytical and ex-
perimental research e«ffort to investigate the dynamic stability and trim
characteristics of a Froude scale model of the AEROCRANE heavy lift vehicle. ¢
The research described herein is intended to quantify the aircraft's transfer
functions to control inputs and its trim conditions in hovering and forward
flight operation in still air.

An analytical and experimental investigation of the hovering dynamics

of a 0.1 Froude scale model was conducted and reported in Reference l.

During these investigations it was determined that the model exhibited a 1

lightly demped retrograde precessional motion, that under certain conditions

of rotor thrust and center of gravity positions, could become unstable.
Although piloted amalog simulations indicated that with proper motion cues
a pilot could stabilize this mode with a reasonable level of effort, it
was also demonstrated that a remote pilot, with inadequate motion cues,
would have great dié%iculty in controlling the model. Theoretical in-
véstigations considering a coupled four-degree-of-freedom hovering ana-
lytical model showed that a relatively simple azimuthally-phased attitude
feedback would readily stabilize this mode at very low levels of feedback
gain., Accordingly it was recommended in Reference 1 that such a feedback
control system be incorporated in the model control system for future
experimental investigatioms.

It was further recommended in Reference 1 that the analytical model

of the vehicle be extended to include forward flight. It was considered

that this extension of the analytical model would provide insight into




DR A A A

the dynamic behavior of the wvehicle in forward flight that would be
valuable in planning and conducting forward flight experiments with the
model. This extended analytical model would also provide the basis for
corroboration of both hover and forward flight experimental results in
quantifying the vehicle trangfer functions to control inputs.

Finally, it was concluded in Reference 1 that certain aspects of the
model and model control system could be modified to increase the safety
of experimental flight operations. In particular it was deemed advisable
to incorporate a means for rapidly achieving a buoyant state at any flight
condition and simultaneously arresting the model's rotational motion so as
to lessen the probability of model damage in the event of model control or
power loss, ete.,

The research efforts reported herein incorporated the above-cited
recomendations and implemented the conclusions of Reference 1 b}} measuring
the hover and forward flight trim and dynamic stability characteristics of
the AEROCRANE heavy 11ft vehicle.using a Froude scale dynamic model in free-
flight. The experimental results are compared with the results obtained

from the analytical model.




ANALYTICAL MODEL FOR TRIM AND DYNAMIC STABILITY

This section presents the analytical model to predict the forward flight
trim conditions and the dynamic response characteristics of the AEROCRANE.
The formulation is complicated by the fact that the rotating centerbody
produces lateral force owing to the Magnus effect, and thus forward flight
trim involves a vehicle roll angle as well as a pitch angle., Further, owing
to the comparatively large drag and Magnus force developed by the centerbody,
the trim roll and pitch angles are relatively large and consequently small
angle aésumptions are not made. In order to make the presentation more
compact the development is presented in matrix notation and then expanded
to produce the trim equations. The dynamic response equations are obtained
by a perturbation analysis about the trim condition. The perturbations are
assumed to be small:éngles; however, the large angle formulation is retained
for the trim or equilibrium condition.

I. TRIM ANALYSIS

1.) Axis Systems
The following axié systems are defined:

a.) Gravity Axis Systems, X, (x4, Ye» Zg)

This axis system is.oriented such that z, is parallel to the local
gravity vector and points downward. x, points forward in the direction
of flight of the vehicle. The flight velocity of the vehicle lies in the
plane of x4, 24 and in general is composed of a horizontal velocity Uﬁ
along the x, axis and a vertical velocity Wo along the 2z, axis. Thus U°

and WS describe the velocity of the vehicle with respect to the earth.




b.) Gondola or Body Axes, Xy (Xg, ¥g, Zs)

This axis system is aligned with the body or gondola of the vehicle.
The body axis xg lies along the longitudinal axis of the gondola pointing
forward,and the axis z, lies along the shaft or vehicle axis of rotation.
The orientation of this axis system with respect to the gravity axis system
is given by three rotations; 8, the body pitch angle; ¢, the body roll angle;
and ¥, the body yaw angle. These rotations are performed in the following
order: ¢ is a rotation about the x4 axis; 8 is the second rotation performed
about the deflected y axis (y'% and ¥ is then rotation about the further
deflected z axis (2”). The cyclic control is referenced with respect to
the orientation of the body or gondola axis system, i.e., the azimuth angle
for cyclic is measured with respect to the negative x4 axis and is positive
in the direction of rotor rotation.

¢.) Rotor Axis System, X, (x4, ¥p» Za)

This axis system is employed in the derivation of the rotor forces and
moments. The z, axis lies along the rotor shaft or axis of rotation and
the x4 axls lies in the plane of the relative wind. The orientation of this
axis system is obtained by rotation of the body axis system, X,, about the
zg axis by the sideslip angle, B such that the x, axis lies in the plane
of the relative wind. That is, by definition in this axis system, the
velocity component along the y, axis is equal to zero in equilibrium flight.
In the derivation of rotor forces and moments, the azimuth angle is measured
with respect to the negative x, direction, positive in the direction of

rotor rotation.

radmbans Lmiad e e w
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d.) Wind Axis System, X, (xw, Vo zw)

The centerbody drag and Magnus forces are defined in this axis system.
The X, axis points in the direction of the relative wind. The orientation
of this axis system is obtained by rotation of the rotor axls system, X,
about the y, axis by the angle-of-attack, a, such that x, points into the
relative wind. That is, by definition the resultant flight velocity is

along x o and the velocity components along the Ve and z , 2Xes are zero,

e.) Shaft Axis System, Xg (xs, Yg» zs)

One further axis system is employed for force and moment resolution and
this is referred to as a shaft axis system, which involves only rotation of
the gravity axis system through the first two rotations,®, the vehicle roll
angle and, 0, the vehicle pitch angle. This is convenient owing to the
fact that the two rotations, the body or gondole yaw angle, ¥, and sideslip
angle, B, will appear as a sum.

These thén are the five axis systems employed in the development. They
are shown schematicaliy in Figure 1. To proceed with the development we
employ the following compact notation. The symbol X with a subseript refers
to a particular axis system as well as the three components of any vector
defined with respect to the particular axis system, for example, the three
velocity components in that system or the forces or moments with respect to

that axis system. Further, the various rotation matrices are denoted by

single symbols,




roll [ 1 0 o 1
& = 0 cos ¢ sin ¢
I (o} -sin ¢ cos ¢J
pitch reos 0 0 -8in o]
0 = o] 1 0
I sin 0 0 cos 9_ (1) E
i5
yaw F cos ¥ sin ¥ o ;
Y = -sin ¢ cos y () i
0 0 1
sideslip ( cos B sin 8 (0] ]
% B = -sin B cos B 0
‘
angle-of-attack [ cos o 0 sin a l
A= 0 1 0
5. _-sin o 0 cos o |

t

i Note also that since all of these matrices correspond to rotatiocms,

¢ the inverse of any of these matrices is equal to the transpose of the matrix.
|
§

Further it may be noted that when the matrix product By appears it can be

expressed as
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cos (B +¥) sin (B +y) 0
B = -sin (B + ) cos (B +¥) 0 (2)
0 1l h

thus By is a function of (B + ¢) only.
Transformations among the various axes are given by
Xe =¥ 03 X
Xa = B X,

(3)
X, = A Xy

Xs=®§X¢

2.) Forces

The various forces acting on the vehicle are defined in various of
these axis systems as follows:

a.) Gravity and Buoyant Forces

The weight of the vehicle, W, acts in the positive z, direction at
the center of gravity of the vehicle,and the buoyant force, Fy acts in
the negative z, direction at the center of buoyancy of the vehicle. Thus

the vector of forces produced by gravity and buoyaney is,

b.) Rotor Forces
The rotor produces aerodynamic forces consisting of thrust, T, in-plane
force H, and side force, Y, defined with respect to the rotor axis system

(Xy). The thrust is positive in the negative z, direction, the in-plane




force is positive in the negative x, direction, and the side force is
positive in the positive y, direction. These forces act at the rotor
hub. Thus the vector of forces produced by the rotor is,
-H
Xq = Y (5)
-7
c.) Centerbody Forces
The influence of forward speed in combination with centerbody rotation
produces a drag force and a magnus force which are defined in the wind axis
system (xw). The drag force, D, is defined as positive in the negative x
direction and the magnus force, F,, is defined as positive in the positive

Y direction. These forces are assumed to act at the center of the center-

body. The vector of forces produced by the centerbody is thus

-D
X, = F, (6)
o (4

It is assumed that the gondola produces no aerodynamic forces owing
to its small size.

The contributions of these forces can be summed to determine the re-
sultant force acting on the vehicle. In matrix notation summing forces
in the direction of the shaft axes, the three force equilibrium equations

are, using the transformation relationships given by equation (3),




Xg = (AB!.)T X, * (13\1')T Xq + 8 X, (7)

The first term represents the centerbody forces, the second term the
rotor forces, and the third term the gravity and buoyancy forces. Equi-
librium flight is given by the condition Xs = 0. Equation (7) can be
expanded using the rotation matrices given by equation (1) and (2) and
the forces given by equations (4), (5) and (6) to yield,

(W+F)sind cos¢p -Hcos (B+y)-Dcos (B +¥) cosa

-(t+F) sin (B +¥)=0

(W-Fp)sing -Hsin (B +¢) -Dsin (B +¥) cos @ (8)
+(Y+Fy)cos B+¥)=0

(W-F,)cos@cos¢p -T-Dsina =0

3.) Moments

The rotor is the only component of the vehicle assumed to produce
direct moments. The rotor produces a rolling moment, L,which acts about
the positive x, axis and is thus a vector in the positive x, direction.
Similarly the rotor pitching moment M is represented by a vector in the

positive y, direction. Thus the rotor moments expressed as a vector are

L
fm"' %M ! (9)
0 .

Since the rotor is propelled by tip propulsion the net rotor torque is
zero. It is assumed that the rotor RPM 1s constant and consequently the

balance of yawing moments is not considered further.
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Moments are taken about the center of gravity of the vehicle which is
assumed to lie on the axis of rotation a distance1}>below the rotor hub., It
is also assumed as noted above that the center of buoyancy is coincident
with the rotor hub and that the drag and magnus forces act at the center of
the centerbody. Thus taking moments in the shaft system

I, = (8y)" I, + AxX . (10)
X; includes all of the forces acting at the rotor hub and consequently in-
cludes all of the forces contained in Xs with the exception of the gravity
force. The vector H is defined in the shaft axis system

H= -roks

where Es is a unit vector along the z axis.

In vector form

i
B = 23 (11)
' Zgﬁs
Consequently
%o tiTs
BxXe = zxxdg (12)
0

Therefore the summation of moments using relationships (9), (10) and (12) is
ZL_ =L cos +¢)-Msin (B +y) +r Y*
s B+ oty (13)

IM, =Lsin (8 +y) +Mcos (B +¥) -, X%

where from equations (8)




e

x;-=F.sin6 cos ® -Hecos (B+¢)-Dcos (B+¢)cosa

(1)

= (Y+Fy)sin (8 +¥)

Y§=-F.s1n¢-nsin(a+¢)-bsin(a+v)cosa (15)
1
+ (Y +Fy) cos (B +¢) ?

Moment equilibrium in trimmed flight is given by ELs =0, ZMS = 0 which

can be expanded using equations (13) and (14) as

Leos (B+¢) - Msin (8 +¥) +r {-Fysing - Hsin (B + )

-Dsgin B +¢y)cosa + (Y+Fy)cos (B +¢)} =0
(16)

Lsin (8 +¢) +Mcos (B +¢)+r°{-F. sin @ cos ¢ + Hcos (B +¢)

+Dcos (B+¥)cosa+ (Y+Fy,) sin (B +¢)} =0 .

These equations may be written in a somewhat simpler form using

A the force equilibrium conditions (xs =0, ¥ = 0) as

XX =W sin'6 cos ¢

, (a7)
5 Y* = - W sin ¢
. 8
Equations (16) take the scmewhat simpler form
3
; Lecos (B+¢)-Msin (B +¢) -r Wsing =0
(18)

Lasin (B +y) +Mcos (B +¢) -r,Wsin8 cos ¢ =0

Thus the trim conditions of the vehicle are given by solution of equations

v (8) taken either with equations (16) or (18). To solve the trim problem
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the forces and moments appearing in these equations must now be related

to the flight velocity and control positions. The initial flight condition
is specified in terms of horizontal and vertical flight velocities with
regpect to the earth, and the gondola yaw angle with respect to this flight
path and then the five equilibrium equations given above are solved to
determine the equilibrium values of the pitch attitude, roll attitude,
collective pitch and cyclice pitch from thegse five equations. The sixth
equation, the yawing moment equations has nct been included since it would
be used to determine the power required. It is assumed in the trim cal-
culation that the rotor RPM is known.

4.) Velocity Components

First, the velocity components must' be expresssed in various axis
systems. The flight condition is specified in the gravity axis system by
the horizontal velocity Uo and the vertical velocity Wos thus the vector

of velocity components in the gravity axis system is

Ve = 0 (19)

The transformations given by equations (3) are employed to find the
velocity components in various axis systems.
Ve =YO 3§ V,
Va =BV, (20)
Vv, =A Va
v, = 8% VvV,
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The sideslip angle is defined by the fact that the velocity component vg

is equal to zero, i.e.,

Ug
Va = )O ‘ (21)
W

The angle-of-attack is defined by the fact that the velocity components v, ”

and v, are equal to zero, i.e.,

v
Vw= 30 ( (22)
0

where V is the resultant flight velocity. From equation (20)
Ve=BY @3 V, (23)

Expanding equation (23) the following results are obtained for the velocity

components in the rotor axls system, expressed in terms of the horizontal

and vertical velocit‘.y,Uo and Wo.

ug = U, cos (8 +¢)cose+wo{- cos (B +¢¥) sin @ cos ¢

& ", “.

+sin (B + ) sin ¢}

ve=-U_ sin (8 +4) cos 8 +W_ {sin (8 +¢) sin @ cos ¢ (24) i

+cos (B +¢) sin ¢}

w,,=U°sin0 +W°cosecos¢

13




The sideslip angle is determined from the condition that v = O, so that
the following relationship exists

-Uosin(B-##)cose+Wo{sin(a+t)sin6cos¢ ’
(25) :

+cos (B+y)sing} =0

In the case of level flight (wo = 0) this relationship simplifies to
U, sin (B+¥)cos8® =0 (26) 3

and therefore in level flight,
B=-¥ (27)

fietisten

In general, equation (25) must be included with the trim conditions to
determine the sideslip angle. Once the sideslip angle is determined,

the angle-of-attack is given by the condition

-1 Ya
a-—-ta.nl

(28)

Up

where w, and u, are determined by equations (24). Again in the level

[ ]
flight case (w0 = 0), using equation (27), the following relationship

exists
a =0 (29)

The magnitude of the velocity in various axis systems is given by

V= \/Uoz +W2 =/u,,a + W

5.) Cyclic Pitch

The expressions for the rotor forces and moments are developed in a wind

v - m s v e

axis system and consequently the cyclic pitch included in these equations is

i
{
f
!
¥
'
!
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referenced to the azimuth angle measured from the negative x, axis called
¥r- The physical system on the vehicle uses the negative direction of
longitudinal gondola or body axis, xg, as a reference. This azimuth angle

is denoted ¥4. Therefore
Y¥o=¥na +P (30)

The rotor or wind referenced cyclic is therefore
A8 = ~ Ay, CcOS ¥4 - By, sin ¢, (31)
The physical or shaft referenced cyclic is therefore j
A8 = - A,y cOS §g - Byg 83n ¥, o (32)
Substituting equation (30) and (31) i
A® = « [A,4cos B - Byy sinB] cos ¥,
(33)

- [Bywecos B + A,y sinB] sin ¢,

Therefore the relationships between the actual cyclic pitch controls of ﬁ

the vehicle A,, and B,y and the wind referenced controls appearing in the
.

rotor equations are

Ajp = Ay, cos B -By, sin$B
: (34)
: Byy cos B + Ay, sinB

Bie

In particular these equations must be noted when calculating stability

detrivatives.

o 6.) Analytical Models For Forces and Moments

The expressions for the various forces and moments described above

15
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must now be expressed in terms of the various flight condition variables.
a.) Gravity and Buoyant Forces
The weight, W, is the welght of the vehicle including the weight of the
helium in the centerbody. The buoyant force, F,, is equal to the density of
the air times the displaced volume i
Fe= pg ¥ (35)
b.) Rotor Forces
A detailed derivation of the rotor forces is given in | !
Reference 1. They are based on the assumption that the rotor blades
do not flap and can be assumed to be infinitely rigid., The rigidity of

the rotor is accounted for in the aerodynamic model by assuming that

harmonic inflow components A and A 4 are developed proportional to the
aerodynamic hub moments developed by the rotor such that

2C 4
Anw =3 PP )
3
2C, ¢

Mo =35

Further an harmonic component of the rotor inflow arises from the

"blow back" of the wake. The magnitude of this effect is taken to be twice
that given in Reference 2.

=-22 X
; l1 20R tan 2 (37)
& where
-1 M
X = tan™" (£ ) (38)
S

Twice the value given in Reference 2 was chosen for reasons discussed in

Reference 1.

16
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The total rotor inflow is given by

)\=)\s-(11+ln) cos yo = A sin ¥, (39)
where
W. -V
‘s =TGR

and the rotor induced velocity is given by momentum theory (Ref. 3)
(o]

e
v = (ko)
/ W, =~V 2 u, 2
2fg f () *+ &F)
Uy
The rotor advanrce ratio ig u-s = CTﬁ' The various f factors account for the

fact that the rotor root is at the radius of the centerbody, Ry .

Define
Rg

=% > f =1~

The expressions for the rotor forces in coefficient form are:

2c, o - 3u ? A_ -p_B
T_ o s s s " 1m 1l
?&.-_3.[f3 + fJ N % +2x'-“'s £,

2C|.|' eo AL f’ Bl" 3
-l U] Bt )‘sf°+§”‘s)"-f1
(L1)

t=g— |[MfH tFH| A A [t

0 [7\113a z_,..f,] A [ . ]
3 + 5 +T -lsf, +2)‘Lf1

[ )
aIf’
[l
]

=2
2

B B Ay 3 A,y
Ml LTI SR o] P RIS Bl




c.) Rotor Moments

The hub moments produced by the rotor were also developed in Reference

1, and are given by

Arw w2
2°*=T[f¢+%f=] g} Ee
ac l+%f3 1+%f3

(k2)

ac, By, Y
ry-tal "g"[f4"'2“:fa]+ﬂs T sty s
P
= i g
l+%f3 1+%f3 : ,

d.) Centerbody Forces

The drag and Magnus forces acting on the centerbody are given by the

expressions

D=2p (U2 +W2)SC, (43)
and .

Fu=5p (U2 +W2) S Cuu (k)

The drag and Magnus force coefficients are assumed to be independent of
centerbody advance ratio based on limited data presented in Reference 4,

This completes the development required for prediction of the trim

conditions with the exception of the sling load and umbilical cable effects.

These effects are considered in a later section.

To summarize the trim calculation, the physical parameters of the

18




vehicle are specified and the flight condition chosen. The flight con-
dition implies that the horizontal and vertical velocities, Uo and Wo,
are chosen as well as the body or gondola yaw angle, ¥. The gondola yaw
angle physically reflects the orientation of the gondola with respect to
the trimmed flight direction. Then the following equations must be solved
simultaneously in the general case,

Balance of Forces, equations (8)

Balance of Moments, equations (16) or. (18)

Velocity Component Relationships, equations (24)

with the conditions

VR=0
-1 Y&
o = tan"t —
Ug

Vehicle control, wind referenced control relationship,
equations (34)

Rotor and Centerbody Forces and Moments in terms of
Flight Condition, equations (41), (42), (43), and (4k)

The solution of these equations yields trim values of the rotor cyclic
and collective pitch, the vehicle pitch and roll angles, and the angle-of-
attack and sideslip angle.

The velocity relationships are considerably simplified in the case
of level flight reducing to the conditions B=~y, and a = 8.

It should be noted that this equilibrium solution does not include
the effects of the sling load and umbilical cable., Appendix D discusses

incorporation of these effects into equations (8) and (16).
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The last two equations may also be written alternatively using equations (18)

Level flight was characteristic of all the flight conditions
examined in the experimental program. Further, in the flight program,
the gondola orientation was always selected such that ¢ = O and therefore
from (27), 8= 0.

Consequently the simplified trim equations for initially level flight
are, placing condition (27) on equations (8) and (16) level flight equations

are as follows:

(W+PFp)sin® cos® ~H-Dcos® =0 i
(W-PFg)singd + (Y+F,) =0 |
(W-Fg)cos@'cos® -T-Dsin® =0 (45)
L+r°{- Fgsing + (Y+Fu}l =0

M+r°{-F.sin8 cos @ + H+ D cos 8}—=0

as

L-rOW sing =0
' (46)
M-roWsinO cos P =0

These equations are then solved using the rotor and centerbody force and

moment relationship given by equations (41) and (4L2). Note also that since

the initial sideslip is zero

Ays = Aqgy (47)

Big = By

The equations given by (45) were programmed on a digital computer and

20




solved for the trim condition. The method of approach was to initially
solve the three force equations neglecting the rotor in-plane and side
forces to determine initial values of the roll and pitch attitude and

then the moment equations can be solved for the cyclic pitch required.
Once an initial trim solution is obtained the rotor in-plane and side
forces are calculated, added to the equations and a new trim condition
calculated. Typically this procedure converges rapidly as the rotor
in-plane and side forces have only a small influence on the trim attitudes.

II, DYNAMIC STABILITY ANALYSIS

This section develops equations of motion for the AEROCRANE incor-
porating a sling load. The attachment point of the load on the vehicle
is taken to be an arbitrary point located on the axis of rotation. The
load is assumed to be a point mass and has two-degrees-of-freedom with
respect to the body. Aerodynamic forces on the sling load are neglected.

The forces and moments acting on the vehicle were resolved into a
shaft axis system(xsﬁ in section I. The shaft system orientation is
obtained by rotating the gravity axis system (X,) through the vehicle roll
and pitch angles. We now introduce two additional axis systems as necessary
to proceed with the development of the vehicle-sling load equations:

a. Attachment Point Axes X, (x,, ¥a»> Za)

These axes are always parallel to the shaft axes xs. The origin of
this axis system is located at the attachment point.

b, Load Axes X, (x., ¥., Z.)

This axis system is a body axis system attached to the load with its

origin at the load center of gravity. The z  axis points downward and 1is
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parallel to the support cable. These axes are shown schematically in Figure
1(c) and Figure 1(d) shows “he freebody diagram employed in the analysis.

}'(s and f's are the force and moment vectors acting on the vehicle form-
ulated in Part I given by equations (7) and (10). i'%,_ is the force vector
which represents the force applied to the vehicle produced by the load and
acts at the attachment point.

The equations of motion for the vehicle-load system can be written in

vector form using Newton's Laws as

& - - - - -

n' Eeqpr R+ X (48)

m, ac:n'l. = =Ry + Fq

F 3 - - - -
Hegle +Qy X Heqe = (- P) x (= Ry)

The first two equations are the equations of motion of the vehicle where

is and f.s were calculated in a previous section. The third and fourth
equations are the loadrequations of motion. It has been assumed that there
are no external forces acting on the load with the exception of the gravity
forces. This assumption is quite reasonable owing to the high density of
the load employed in the experiments. The sign of the moment term in the
last equation arises fram the fact that moments are taken about the load
center of gravity. ﬁc ojr is the moment of momentum of the vehicle with
respect to‘the center of gravity of the vehicle and ﬁs is the angular rate
of the X_ axis system, A, ov 18 the moment of momentum of the load with

respect to the load center of gravity and (7,_ is the angular velocity of the




load axis system with respect to space. The support cable has been assumed

to be a massless rod. It is further assumed that the load is a point mass

that is, that its moments of inertia are zero with respect to its center
of gravity and consequently H. a|u = 0. Therefore the fourth of equations
(48) vecomes

BpxR =0
This implies that the reaction force R, always lies along the support

cable direction. The reaction force can therefore be eliminated from the

third of equations (48) by taking the cross product with P, so that the

third equation becomes

m'_ (§L X acap_) = §L X F‘.GL

R, is then eliminated from the first and second equations using the third

equation

Ry =FgL-m at:ra||.
so that equations (48) can be written as

* I"'it:ql' +ﬁsxﬁc¢‘r =P x (Fg - m, acoll.) "'is
m’ acal' = (Fq - m ;c¢||.) + is (49)
m (§L x ;CG’L) = i’l. x i’u
the last equation can also be written as

§L X (mL ECGlL - F.'GL) = O (""9&)

Now the individual terms in equations (49) and (49a) are developed. I, 3,

k denote unit vectors with subscripts indicating their axis orientation.

23




Lo o B EREEEEEEEEETE T
e —— i tmms

o

The various accelerations involved in the equations of motion may be
written as

ECG'L =;A +ﬁ|_x (ﬁLx §L) +6Lx ﬁL

- . - - (50)
8ca|r = ud, + ¥, Jg
The attachment point acceleration is
By = deqr + 0, x (@, + B) +8_x B,
The various terms in equations (49) and (50) are given by
B, =2z, is
e (51)
ﬁs=ps; is+qs 3s
ﬁ,_=ps§ +q 3 +pc I +a. 3,

FeL =m, Gis
P, a.nd q, are the angular velocities of the load relative to the vehicle
which has angular velc;cities Py and qq-

The angular displacements of the load axes with respect to the shaft
axes are given by a roll angle ¢, and a pitch angle 8, so that the rela-
tionships among the various axes are

X, =0 %X,

X,_=®,_ !,_Xs

2k




Thus

Yy - o)
i cos © sin9 sin¢g -~ sin@ cos ¢ ig
3s#= (o} cos ¢ sin ¢ H Je
Es sin® - sin ¢ cos © cos @ cos @ ] K,
\ i \ /
and : (52)
3 1
i fcos 8, sin 8 sing, - sin @  cos ' Is
i 8= 0 cos @ sin @, 33

Lsx:i.ne,_ - sin ¢, cos 8 cosB,_cos(bLJ k

The development is specialized for hovering flight by assuming that
the initial vehicle and load attitude angles are zero such that 6, @, 0,
and ¢, represent perturbations from trim. It is further assumed that

these perturbations are small so that equations (52) can be expressed as

i,=1,-0k
Jg=3.+0 K
k =01, - 03, + Kq (53)
I, =1 -0 F
Ju=3, +o K

For the load equation, it is desirable to express the gravity force in

terms of components in the load axis directions. This is accomplished

25
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F by inverting transformation (52)

e ——r——— .~

is [ cos 8
3. - sin ® sin ¢
kq | -sia 8 cos ¢
Is I cos 9
. js = sin 8, sin ¢,
i kg | -sin 8, cos 8

For small angles

e
2
]
(W
+
[« ]
w

cos ¢

sin ¢

cos @
sin @&,

sin 8
- gin @ cos @

cos 8 cos ¢

sin 6,
- sin ¢ cos §

cos 8, cos ¢,

[ B I

(54)

Substituting from the second set of relationships in (54) into the first

Kq=I_(-0-8)+(+¢ )3 +5k

where only first order terms have been retained as consistant with the small
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angle approximation.

The load angular velocity expressed in load coordinates becomes
Q, = (Ps +p) I+ (qs +q) I,

where only first order terms have been retained.

The load acceleration is given by
;calt. =a, + (C.ls +4,) 2z, 1, - (f’s + D) 20 3 (56)

where again only first order terms have been retained. The acceleration

at the attachment point a, is given by

a, = ;ce'r + {quA Es}

(57)

Converting equation (57) to the load axes reference using (54), retaining

only first order terms and incorporating into (56),

Beapu = Aty + {4 (Za+2) + 4,20 1,
(58)
- {I'Js (ZA"" z.) + 928 3,

Equations (58) and (55) are now employed to express the reaction force
R, in load coordinates

Ry = Fgp - my acc'l.
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Ry =m g{l.t‘_ - (8 +9L) il."' (o +¢|.) 3L}

oy {acg'F*' [qs (ZA + ZL) + 4§, Z,] iL (59)

ms (Z, +2Z.) +d. 2] I3

Expressing the components of this vector as

XL=-ng(9+9L)-mL[ﬁs (ZA+ZL)+QLZL]'mL&s

Y,_=m|.3(¢+¢.,)+mq.[i>s (Za+20) + D 2] -m ¥ (59)
ZL =M, g
so that

(For - m, acep.) =X I, +Y 3, *+2, K
The load equation of motion is obtained from (49a) as

fo(‘mL ;ca'L -f‘GL)=O

or
*

Joz, x, -I,2, ¥ =0
For the second of equations (49) the reaction R, is expressed in terms of
shaft coordinates. This is obtained from the unit vector relationships
given in (53) taken with equations (59a). Since X, and Y, are perturbation
quantities the result is

(B, - m, acolk) = (X, +8, Z,) is
(60)

+ (Y, - & ZL)35+ZLES
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since Z, = m g, equation (60) can be written as

Foo = my acah. = (X, +mg8 ) is (608)

+ (YL -mg ¢|.) 35 +mg ES
This is the form of the reaction force required for the second of

equations (49). For the first of equations (49), the cross product P, x

(Fm. -n, QN'L ) must be calculated where T’A = Z, Es' Taking the cross

product using equations (60a)
Prx (Fou - my acop) = Jg (24 (XL +mig &)}
-1, {2y (Y -me &)}
The equations of motion can be written as

ﬁca]l +5s x ﬁceh = 35 {z, X, +mi 8 )}

JT-S {ZA (YL - mE @ )N+ f's
(61)

N ¢ .
m’ acqlr = (X, +mg8 ) i

+
—~
>

-
1
=]
-
[1:]
o
L
Cle
+
=]
-
i1
=
+
>4

Juz X -1 2,7, =0

where X, and Y, are given by equations (5%a).

Equations (61) are the equations of motion for the AEROCRANE with
a point mass sling load. These equations can be simplified by noting
that the last of these equations reduces to

X, =0
’ (62)

Y, =0




= Lemnan o

R

so that the first two equations become

3 - - - -
Hegpr + Qs x Hca'r =L, +J, (Z, mg 6 )

- (63)
+ 1 (2, mg @)
n’ 5."', =ngeLis-ng¢L 38+m,_gl-<s+xs :
Expanding equations (62) and (63)
'p+I,00=L +Z,mge
i
I'§«I,0p=M_ +Z,mg8 :
. !l o :
m u, = Xs +m,g 0,
P (64)
mov, = Ys -mg &
-m 4 -mg (6 +0.) - m (qs (Zy +2) +§,2) =0

[
o

-m, w'rs+m,_g (¢ +¢L) +m (i)s (ZA +ZL) +I.’LZL)

Equstions (64) are equations of motion for the AEROCRANE including the
effects of a sling 1o:a.d. They have been specislized for the hovering
case by the assumption of zero initial attitudes. For the general case
of forward flight the assumption of zero initial trim angles must be
removed,
as a result of the small angle assumption

4, = .e.L

B, =&

and
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Substituting into equations (6k4)

'.‘ Ld
I ¢+IZQO

Ls + ZA ngq

I'é-1.0¢=M +2,mg8

’ 2 - -

m us=xs+m|,ge|.

Y . (65)
w VS‘Ys'ngﬂ

I
o

[
o

i, e (B8 v (B (2, Y2+ 6 2 =

The expansion of Xs’ Ys, L

- and Ms in a Taylor series about the

equilibrium flight condition has been treated in detail in Reference 1.
There are additional aerodynamic terms which were developed in Reference
1 which depend upon the acceleration of the vehicle and arise from the
fact that the center of gravity of the vehicle is not located at the
center of buoyancy.

These terms are wyith signs for the right hand side of the equations

Rolling Mament equation

3
-r BV
o a8

Pitching Moment equation

r m 4
O a 8 (66)

Horizontal Force equation
r, ua )
Lateral Force equation

.-roma¢
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Further the effects of the umbilical cable must be added. These are
developed in detail in Appendix B and are given by the sum of equations ) i
(B-18) and (B-34) as i

Rolling Moment equation

" a8
ye Za (Vg +2,8) -WZ, L+ 7D ¢

Pitching Moment equation

. A dax
mce ZA (us + ZA 9) - chA (l + d—'e-) e

Horizontal Force equation (67)

o ®,
mce (us-.+ZA 6) - Wc (1 + d—a-) e

Lateral Force equation

. a8
m, (¥, -2, 8) +w, (1+3-%)¢
Combining equations (65), (66) and (67) gives the hovering equations of

motion.

These equations may be written compactly in matrix notation as

M{g} +c{g} +k{a} =F {5} (68)

The mass, damping, spring, and eontrol matrices, M, C, K, and F are
given on the following pages. The motion variables {q} are
?
]
,' fad = Jo
; 8
' X
Yy

The control matrix {8} is

A
{6} = {B::}




These equations of motion were solved to determine the characteristic
dynemics of the vehicle.

The moment equations are normalized by the inertia I/, the force
equations by the mass m , and the sling load equations are divided by
the sling load mass times the sling load length. In order to make the

notation more compact the following symbols were introduced.

2 _ Fs 1,
w -

b I’
@ Iz

¢ = ?Q
wa _ E

s zZ,

In addition, the symmetry properties of the aerodynamic derivatives were
employed to eliminate the lateral derivatives, i.e.,

L = M Ly = - M,

P q 18 18
LV = - % YA = Ha
18 1s

I‘u = Mv

Yu = Hv

Yv = Hu

Y = -H

q P

The subscript notation for the aerodynamic derivatives implies that
the moment derivatives have been divided by I’ and the force derivatives

by o'
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The object of the experimental program was to determine the vekicle

transfer functions, which can be obtained from equations (68) in the following
fashion. First the Laplace transform of equations (68) is taken giving
[Ms® + cs + K] {Q} = F {4} (69)

where {Q} 1s the Laplace transform of the motion variables {q} and {A} is

the Laplace transform of the control variables {6}. Equations (69) become

{Q = [Ms® +cCs + K]'l F {4} (70)

. There are twelve vehicle transfer functions, given by the elements of the

matrix [Ms2 + Cs + K]-l F. The twelve elements of the matrix are shown
symbolically in the next page. These elements characterize the response
of the vehicle and sling load to the control 1nput§. Since there are six
£ motion variables and two control variables, twelve transfer functions are

;. required to characterize the dynamic motions of the vehicle.

The transient response experiments were designed to verify the analytically
g: calculated transfer functions which describe mathematically the dynamic response
é of the model. Owing to the polar symmetry of the model and its aerodynamic
characteristics in hovering flight, six of these transfer functions are simply

related to the other six by the following relationships

Qgs? = 8(s

Ajslis Bysis
?E 0(s ='_Q$s?
2 Ajels Bis(s




ISS? = YSs?
Al' 8 Bx. 8
YSsE ._xgsi
A;. 8 Bll 8
Owing to these relationships only a B,y input was applied in hovering,

as the response of the vehicle to A,y inputs can be determined from the

response to B,, inputs.
The experimental verification of these transfer functions is
discussed in a later sectiom of the report.
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EXPERIMENTAL APPARATUS

I. MODEL

The model employed for the experiments described in this report is a
modification of the 0.107 Froude scale model of a proposed 50 ton payload
AEROCRANE vehicle as described in Reference 1. The modifications consisted
principally of an increase in the spherical centerbody diameter, provision
of a dumpable water ballast package and incorporation of a stability aug-
mentation system. According to the conclusions and recommendations made
in Reference 1, these modifications were provided to increase flight safety
by allowing positive buoyancy to be achieved at all times and to ease the
remote pilot's task in controlling the lightly demped model motions with
inadequate motion cues.

A photograph of the modified model in hovering flight and showing the
dumpable water ballast sling load is shown in Figure 2, and a 2-view drawing
is presented in Figure 3. Table I presents a summary of the model physical
characteristics, .

_JIx, CENTERBODY MODIFICATIONS

To achieve the additional buoyancy required for flight safety consider-
ations the gas-containing spherical centerbody was increased in diameter from
16 feet to 18 feet, providing an additional 60 1b of buoyant 1lift., The
increased gas envelope size necessitated a revised internal structure con-

sisting of longer frame members, addition of internal stress-relief cables

and gas envelope stress-relief patches at the radial pass-through fittings




to accommodate the increased buoyant gas loads. These structural modifications
are shown schematically in Figure UL,
JII. WATER BALLAST SYSTEM

The jettisonable water ballast used to simulate a payload was carried
in a special aluminum container with a trap-door type bottom and suspended
from the model gondola as a sling load as shown in Figure 2. The water was
contained in a plastic bag liner fitting within the aluminum container. The
trapdoor latch was secured with light polyester fishing line which was in
turn wrapped with a coll of high electrical resistance wire. Upon command
from the truck-based operator an electric current would heat the high
resistance wire, melt the polyester fishing line and allow the trapdoor to
open, thereby jettisoning the water ballast. Electriec power for the jettison
was provided by a dedicated 24 volt battery, thereby assuring operation even
with complete power loss from the truck generator systems.

IV. STABILITY AUGMENTATION SYSTEM

As a result of tl';e flight test experience and analysis efforts reported
in Reference 1, it was determined that a stability augmentation system (SaS) to
stabilize the lightly-damped retrograde precessional mode would greatly ease
the remote pilot's burden in controlling the model. Although it was demon-
strated in analog simulator flights that the pilot, with adequate motion cues,
could stabilize this mode, in the model flight operations the required cues
were not available to the remote plilot, and controlled flight was nearly
impossible. Further, it was shown in Reference 1 that o phased attitude

feedback given by the expressions
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Atg =K, [@ siny - 8 cos y] (69) i

Byp = K, [¢ cos y + 0 sin y] (70)

would effectively stabilize the lightly-damped precessional mode. Accordingly,
for the experiments reported herein, a stability augmentation system was
implemented to accomplish this task.

In view of the exploratory nature of the research, the time constraints

associated with the experimental operations and the test objective of forward

flight experiments, a more general stability augmentation system was designed
and installed in the model controller. This stability augmentation system,

schematic representations of which are shown in Figures 5 and 6, allowed

for selection of any desired feedback phasing angle, vy, in addition

to v = 45° as indicated by equations (69) and (70). Additionally,
although the hovering analysis of Reference 1 indicated no specific need
for angular rate feedbacks, these were allowed for in the implementation
] as diagrammed in Figufe 6.

Model attitude and rate information was supplied to the SAS (stability

augmentation system) by the three-axis integrating rate gyro package des-
cribed in Reference 1, This instrumentation package, originally intended

for flight dynamic data acquisition, was more than adegquate for SAS inputs

. and performed faultlessly. The analog integrators required for determining

model attitude from the rate gyro information were revised to virtually

eliminate environmentally-produced drift errors.
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V. AZIMUTH-HOLD LOOP

The agimuth-hold loop, driving the retrograde motor that allowed the
gondola to be positioned azimuthally, was revised to provide greater torque
capability and thereby eliminate the difficulties experienced in the flight
tests report in Reference 1. The revised system possessed approximately
L times the torque capability of the original system. Extensive laboratory
testing of this vital loop closure was performed on a specifically-designed
flight simulation set-up to insure satisfactory performance, and, although
in-flight performance was adequate throughout the flight envelope, certain
dynamic problems were encountered in flight, and loop compensation adjustments

were required.

VI. RAPID DECELERATION SYSTEM

A necessary function in the flight safety systems that includes rapid
achievement of a fully-buoyant state through ballast dump is the rapid
deceleration of the model rotational motion. The model rpm control system
operates through varymg the speed of the four fixed-pitch propellers mounted
on the model wings by adjusting the output of the main 400 Hz model-power
alternator. In order to decelerate the model rotational motion rapidly it
is necessary to actually reverse the propulsive motor voltage polarity and
hence reverse the direction of rotation of the propellers. To ac2omplish
this, reversing-current relays were installed on the model gondola electrically
downstream of the rectifier package. A high sensitivity alternator field
control potentiometer was incorporated to allow the operator to rapidly

reduce the motor power to near zero, actuate the polarity reversing relays




and subsequently reactivate the alternator field to provide reversed thrust.
The system in operation was capable of arresting the model rotation in
approximately one revolution without exceeding model motor rated currents.
Thus, in the event of an in-flight problem that threatened the flight

safety of the model, the model rotational motion could be arrested and a

fully-buoyent state achieved by ballast dump in approximately 3 seconds.
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EXPERIMENTAL FLIGHT TEST PROGRAM

The experimental flight test program was conducted in Hangar No. 1 at

the Navel Air Engineering Center, Lakehurst, N, J. in the time period from
March 21, 1977 to May 2, 1977. A total of 56 data runs were performed and
approximately 20 hours of flight time were accumulated. The principsal

test objectives were to quantify the model trim conditions and transfer

functions as they varied with flight condition, model configuration and

stability augmentation (SAS) for correlation with the theoretically pre-

dicted characteristics.
The flight testing efforts and procedures were divided into two
principal types of tests, hovering and forward flight; each of these types g

will be discussed separately.

I. HOVERING FLIGHT

A photograph of the model in a typical hovering flight is presented in

Figure 7 showing the model, water ballast sling load and umbilical. At the
bottom of the photograén can be seen the parked truck which carries the crew,
model control and power systems. A photograph of the flight crew arrangement
is presented in Figure 8 showing the pilot, flight engineer and test director
at the model system control and dats consoles. Although the photograph .of
Figure 7 shows the bottom of the umbilical suspended from a tower mounted

on the test truck, most of the hover runs were accomplished w.ithout the
tower , and the umbilical ran downward from the model directly to the

ground. This‘arrangement allowed hovering tests to be performed without

any horizontal force or moment contribution from the umbilical cable
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Other hover tests with the umbilical tower, as pictured in Figure 7, were
performed with horizontal force and moment initial conditions imposed by
the umbilical catenary shape. A summary of the hovering test conditions
investigated is presented in Table IT.

The hovering tests were performed by establishing a steady hover
condition with the bottom of the model approximately 90 ft. above the
ground and with the umbilical hanging directly downward. This zero-
initial-condition hover was established with the SAS in operation at
v = 45° and with the gain K, T 0.3 °/,. This SAS configuration has been
established on the initial run as being a level of stability augmen-
tation that was completely comfortable to the pilot and for which the un-
disturbed model motions were undetectable. At these initial conditions the
SAS gain was reduced to the level desired for the particular test sequence,
and a pulse input in cyeclic pitch was applied by the test engineer by
means of a switch on the engineer's console. After establishing the initial
conditions and throughout the ensuing transient response, the pilot's controls
were held fixed. Figure 9 shows typical hovering transient responses for the
unstabilized model and with various level of SAS gain..

II. FORWARD FLIGHT EXPERIMENTS

Photographs of the model during forward flight experiments are presented
in Figures 10 and 11. In these figures can be seen the relative position of
tﬁe model, umbilical catenary and the truck carrying the crew and model support

systems. The forward flight tests required additional instrumentation, not
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necessary for the hovering experiments, consisting of a fifth wheel for

measuring truck speed,and umbilical shape and position instrumentation.

The fifth wheel is mounted under the rear of the truck as seen in Figure
11 and the umbilical shape and position instrumentation is mounted at the
top of the umbilical support tower on the truck.

The test procedure for the forward flight runs commenced with es-
tablishing a steady hover in the northwest corner of the hangar immediately
to the right of the center crack in the hangar doors visible in Figure 10.
Owing to the presence of a fenced in storage area, also visible in the
foreground of Figure 10, it was necessary to fly along a diagonal path
towards the southeast cornmer of the hangar. Runs were made in ocne direction
only, principally to eliminate the necessity of recompensating the rate
gyro package for earth's rotational rate., Once a steady hover had been
established with the model in & position relative to the truck that was
acceptable with respect to altitude and umbilical shape, the pilot would
apply the cyclic and collective pitch inputs required to transition the model
to the desired forward flight condition. The truck driver was required to
adjust the truck speed to stationkeep with the model. The desired forward
flight trim conditions were established with a nominal SAS gain of approxi-
mately 0.3 °/_ and y = 45°. For the initial forward flight runs the trim
condition was maintained steadily with no additional control inputs in
order to measure the model trim conditions. At a predetermined location
along the line of flight the transition back to hovering flight was
instituted and the end of run hover established. In general, excepting

for the very lowest speed flights, transitions to and from the forward
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flight trim conditions were made with the pilot operating in an open loop
fashion. That is, there was inadequate space within the hangar for the
pllot to perform a transition by a series of small perturbations to the
controls and subsequent corrections to fligit path errors. Instead, estimated
trim control positions were predetermined and the pilot simply put the
control at these values, at a prudent rate, to perform the transition. The
SAS-augmented model stability level was such that no difficulty was experi-
enced in transitioning in this manner. A typical transition time history
is presented in Figure 12 showing the pilot's control inputs and the ensuing
model pitch and roll angular moti-oms.

The data required to determine the model transfer function to control
inputs were obtained, as in hover, by applying an electrical pulse input
to the cyclic controls by means of a switch. In forward flight, however,
in order to obtain the unstabilized (K, = O) model transfer function and
still maintain the required trim control settings, it was necessary to utilize
track and hold network; on the model control signals. These networks held
the trim controls required while the SAS gain was switched to zero to obtain
the desired transient response time histories. Such a typical transient
responge time history at a forward flight trim condition is shown in Figure 13.

Table III present a summary of the forward flight trim conditioms.
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COMPARISON OF ANALYSIS AND EXPERIMENT

The results of the flight test experiments and the theoretical developments
have been compared on & run by run basis to corroborate the analytical models.
Where necessary, adjustments have been made in the theoretical representations
to obtain better agreement between theory and experiment. In general, only
fractional adjustments in various coefficients were required to obtain ex-
cellent correlation between the experimental results and the analytical modesl.

I. TRIM CORRELATION

The correlation between theory and experiment for forward flight trim
conditions is presented in Figures 1l through 16 which show comparisons of
measured and predicted model longitudinal and lateral equilibrium conditions.
The correlation demonstrated in these figures was obtained by adjusting the -
assumed value of CD of thevrotating spherical centerbody principally on the
basis of the longitudinal equilibrium comparison. The resulting value of
CD = 0.80 is & 33% increase over the CD = 0.60 value assumed in Reference 1,
taken from Reference ?. No adjustment was required to the assumed value
of Magnus lift coefficient, CLM = 0.30, and the rotor wake representations
remain as developed in Reference 1.

1, Longitudinal and Lateral Force Equilibrium

The expressions for force equilibrium, equations (45), can be combined
and solved directly for the Magnus lift and drag forces, giving:
Fy ==(W-F)sing - Y- SY cos ¢

and
H (W = Fy)

cos 8 cos & (Y + Fy) tan ¢} tan & + SX

D=~
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where the additional terms SX and SY represent the measured umbilical forces
acting on the model,and level flight at zero slideslip has been assumed.
These quantities have been evaluated using the experimentally- measured
values for all terms excepting Y and H, the rotor in-plane forces, which
were evaluated using the theoretical model at the experimental operating
conditions. The resulting values are presented in Figures 14 and 15 and
compared with the theoretical values for Fy and D employing the assumed
force coefficlents.

As can be seen in Figure 14, the original value of Cp = 0.6 seriously
under predicts the values of centerbody drag extracted from the experimental
data and a value of.CD = 0.80 is chosen as being a fair representation of
the drag coefficient within the experimental scatter. The sources of the
experimental scatter in the drag data, include, in probable order of
importance, determination of model velocity from truck speed measurements,
wind currents within the hangar and accuracy of measurement of umbilical
shape and position. ,

The last source of error is particularly important in the determination
of Fy since the umbilical lateral force term, SY, was not measured directly
but was inferred from the beginning-of-run hover umbilical position. This
uncertainty is reflected in the relatively-larger scatter shown in the
experimental F, data presented in Figure 15. The theoretical Magnus force,

Ly

the experimental data. Due to the mentioned experimental uncertainties and

assuming a value of C. = 0,30, is shown in Figure 15 in comparison with

the resulting data scatter it was concluded that it would be unjustified to

attempt to refine the Magnus 1lift coefficient value any further.
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2. Trim Control Requirements

The data presented in Figure 16 show comparisons of theoretical and
experimental values for the longitudinal and lateral cyclic pitch required
for trim. While the force equilibrium equations (8) used to express the
centerbody aerodynamic forces are influenced by the assumed rotor aero-
dynamics through the H and Y terms, the cyclic pitch requirements for trim
presented in Figure 16 are much more indicative of the accuracy of the
rotor aerodynamics representation. In particular the good low speed agree-

ment between theory and experiment shown in the A, data indicates the

absence of significant sphere wake interference effects since they are not
included in the theory. At higher speeds and inclination angles, where

sphere wake interference would be expected to be less severe and not a

factor, the experimental A,y values are somewhat greater than those pre-
dicted by theory and the B,y values are in very good agreement. A possible
explanation for this may be in the less-than-perfect Coleman representatfbn
of the rotor wake longitudinal "blow back". The possibility of blade
stall tends to be ruled out by the fact that the average blade 1lift coef-
ficients are approximately the same value across the lateral axis as across
the longitudinal axis.

In general, the predicted cyclic pitch requirements for trim are in
good agreement with the experimental measurements, and it can be concluded
that the rotor aerodynamic representations are acceptably accurate for the

objectives of predicting force and moment equilibrium,.
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"II, TRANSIENT RESPONSE CORRELATION

This section discusses the correlation between the experimentally
measured transient response characteristics of the AEROCRANE model in
various configurations and flight conditions and the theoretical pre-
dictions. Experimental measurements were made of the transient response
to control inputs in hovering flight at two center of gravity positions
with various sling loads and levels of automatic stabilization, Table II
indicates various model configurations examined in hovering flight.

Figure 9 is typical of the data obtained, Additional measurements
are presented in Figures A-1l through A-6 in Appendix A. It should be noted
that the cyclic pitch trace includes the cyclic pitch applied by the auto-
matic stabilization system as well as that applied by the operator. A
pulse input of approximately two seconds duration with an amplitude of two
degrees was employed to excite the transient motion of the model.

The transient response of the unstabilized model is characterized by a
lightly damped mode ﬁ}th a period of the order of ten seconds and a damping

ratio of less than O.1l. Figure 17 presents the frequency and damping

characteristics of this mode as measured from the traces. These measurements

should be viewed as approximations to the character of this mode as it can be

seen from the measured time histories that the responses are not precisely

damped sinusoids indicating the presence of scme of the other modes of motion.

Also shown is the comparison between the theoretically predicted characteristics

of this mode as given in Appendix C with the measured values. The agreement
between theory and experiment is excellent for the high center of gravity

configuration. The damping agrees well for the low center of grafity con-

figuration and the frequency agrees for run ll. A lower frequency is predicted
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for run 36. The reason for this discrepancy is not clear, particularly in
view of the excellent agreement for the other three runs.

Figures 18 and 19 show a direct comparison of the measured and calculated
transient response characteristics for a cyclic pitch pulse input. The agree-
ment in general 1s very good. In particular, the amplitude of the roll response
predicted agrees very well with the measured value. The theoretical pitch
response exhibits a smaller amplitude than the measured response, however,
the overall agreement is very good. Thus, the theoretical approach presented

here gives a good prediction of the vehicle transfer functions.
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CONCLUSIONS
Based upon the analytical and experimental research program reported
herein the following conclusions are made:
1.) The Froude scaled model of the AEROCRANE vehicle can
be flown by a remote pilot in hovering with a resonable level of
effort, Remote piloting in hovering flight was made considerably
easier by incorporation of a relatively simple attitude feedback

gystem. This feedback system stabilizes or improves the damping

of the unstable or lightly damped mode characteristic of the

AEROCRANE in hovering.

2.) 1In forward flight the natural damping of this mode
increases and no difficulties were encountered controlling the
; vehicle in trimmed forward flight without the stabilization system.
. 3.) Accurate quantitative data on the trim and dynamic

stability characteristics of the model were obtained from remotely-

piloted flight {ests in a protected environment.
4L,) The theoretical model for the forward flight trim character-
istics of the AEROCRANE predicts the measured experimental data with a
minor adjustment in the spherical centerbody drag coefficient.
| 5.) The analytical model of hover dynamic stability character- f
isties correlates very well with the measured model transient response ‘

indicating that the analytical model provides a good representation

———

of the transfer functions of the vehicle.
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TABLE 1

SUMMARY OF MODEL PHYSICAL CHARACTERISTICS

ROTOR DIAMETER
SPHERE DIAMETER
MODEL WEIGHT (wo)

CENTER OF GRAVITY
POSITION (ro)

MOMENTS OF INERTIA
1’ (pitch and roll)*

I
z

RUNNING WEIGHT OF UMBILICAL
CABLE

Low c.g.
High c.g.

Low c.g.
High c.g.

Low c.g.
High c.g.

* Determined by experiment and include virtual mass effects.
[
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39.9 ft.

18,2 ft.
177 lbs.
192 1bs.

2.71 ft.
1.83 ft.

521 slug-ft?
576 slug-f£t?
653 slug-ft®

0.61 1b/ft
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Figure 1, Axis Systems Used for Analytical Model.
(a) Gravity, Body, Rotor and Shaft Systems.
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: (b) Ordered Rotations.
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Figure 1, Continued.
(¢) Load and Attachment Point Systems.
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Figure 2. AEROCRANE Model with Jettisonable Ballast Package.
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Figure 3., General Arrangement Drawing of AEROCRANE Model.
65




Sedce

: _Zq/er'no’/»
b frna'nf Cobles

Zornbuckefe

T

Figure 4, Schematic Drawing of Model Structural Modificationms.

66

Py
oo
wl

_ZD/el‘llOf‘




GAW PRASE aNGE
S TCH ADIUST e ADIVST MENT
A A / d
L) .
LAGODINAL
5 08 ¥ e P\\v\\._
B Aig
3 ; . M .
: PITTN AMTUDE Brewa
Lo siavaL FRom P oar S
;z aqRo e snY
Ble
T; : Py QhANNE-
5 |
12
™ .
L ,' LONGTOD VWAL,
! Sy e P
 { A\B
, $ Ck‘\:t}*
. x —_—0 KA
| eouL  AYTITUDE Tena
| ss\c.m\, ==2oM sk E:cuc.bvﬁu‘\’_
¥ ! : Bie
£
BOLL. CHAMNEL

Figure 5. Schematic of Attitude Stability Augmentation System.

67




o

FEEDRACK- o
GAW PUASE ANGUE”
IO
B,
| _m%& oAl :

®
/
A

PR RATE . a
X S\GNAL. TROW 3 “ i
: tho ‘ CLC_PIEW
i SM“& 1
0 B
[+
4 PrikR RATE  CRANNEL
F; Buqmg\‘pw
: e P
3 ' —] sin g p——m——
- ‘P O\ov
- ToU. RATE -
i S\ANAL FOOM AL
G0 | 1 st | eeie PN
By
ouw. WATE OANNE
NGTE ! SMSTEM 1WSTALLEYS W
MDOEL ®uT No"\f'
VSED W ELPERINENS
Figure 6. Schematic of Angular Rate Stability Augmentation

System.

68




o
Kej
o1t}
g
—
=5
b
o
)
S
]
T
=
o
—
(3]
Lol
O
=
o
=
<

Figure 7.




Figure 8. Test Crew Arrangement.
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Figure 11. Arrangement of Test Apparatus for Forward
Flight Experiments; End of Run.
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Typical Forward Flight Transient

Figure 13.
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APPENDIX A

HOVERING TRANSIENT RESPONSE DATA

Figures A-1 through A~6 present hovering transient response data for
the various flight conditions listed in Table II, The data in these
figures are traced directly from the oscillograph records and include
all higher frequencies contained in the original records. In particular,
the one-per-revolution content, due in part to blade tracking irregularities,
is preserved as faithfully as possible, For clarity only B,e control time
histories are shown. The other model controls, A;s and 90, are constant

during the time histories presented.
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APFENDIX B

UMBILICAL CABLE CONTRIBUTIONS TO DYNAMIC STABILITY

The free-flight model of the AEROCRANE was equipped with an umbilical

cable to provide power and control signals to the model and to carry data

transducer signals to the ground recording instrumentation. The weight of
this umbilical cable was of sufficient magnitude that its contributions to
the dynamic stabllity of the vehicle must be included in the equations of

motion. This section describes the manner in which the effects of the um-~

bilical cable were incorporated in the equations. Only the hovering flight

case is considered here.
Figure B-1l shows the configuration of the umbilical cable for hovering
flight experiments. The shape of the umbilical cable is assumed to be a

catenary. The lower end of the cable is in contact with the ground and

assumed to remain fixed. The upper end of the cable is attached to the

model and is assumed to move only in a horizontal plane. This latter assumption
is consistant with the dynamic stability analysis which assumes that there is
[ 4

no vertical motion of the model during its transient motion.

The cable will add to the mass of the vehicle and will also produce

forces and moments due to the tension in the catenary.

F: ' The effective mass of the cable is evaluated first. When the vehicle
translates it will not carry the entire mass of the cable with it but rather

} will deform the cable into a new shape as shown in Figure B-l. It is assumed
]

that there are no dynamics associated with the cable itself. That is, the
motion of the cable is assumed to be quasi-static such that its shape is
always that of a catenary. The effective mass of the cable can be determined
by evaluating the kinetic energy of the cable as a function of the horizontal

translation velocity of its upper end (Aio).

9l




Define the following quantities
m = running mass of cable L
8 = arc length of cable

horizontal and vertical coordinates to any point on the cable

X,y
¢(y) = mode shape of catenary, normalized by horizontal deflection of

upper end of the cable.
Thus the equation describing the local horizontal translation of the
cable is given by

Ax = Ax_ ¢(y) (B-1)

Differentiating this expression, the translational velocity of the
cable,incorporating the quasi-static assumption that the shape of the
cable is unaffected by motion, is given by . 1

&% = ax_ o(y)
the kinetic energy of the cable is therefore : 1
KE = %m[s (A%)® as

Of
or

KE = % m A% 2 j‘s ¢2 (y) as (3-2)
0

Evaluation of the integral will give the effective mass of the cable,

Now the equation for the perturbed shape of the catenary is developed
such that the integral in the expression for the kinetic energy can be
evaluated.

The equation of the catenary shape shown in Figure B-1 is given by

y = L, (cosh fL -1) (B-3)
o .




where -

and H = horizontal component of tension in catenary.

The assumption that the upper end of the cable moves only in a
horizontal direction (Ay = O) gives a relationship between a pertur-
bation of the tension, H (or Lo) and a perturbation of the upper end

of the cable, 8x . From equation (B-3)

X X X X
H Ay = 0 = AL (cosh: =2 - 1 - =2 ginh =2) + ax_sinh [=2] = 0 (B-b)
5 L L L o] L
Fa ¥ o] o] 0 [o]
' Solving equation (B-3) for x
X = L cosh -1 1+ LL ] (3-5)
o]

If the cable translates horizontally a small distance Ax equation (B-5)
becomes

x + Ax = (L + AL) cosh Ly —L— (B-6)

Therefore subtracting‘equation (B-5) from (B-6)

l ax = (L, + AL) cosh. * - L, cosh “Lor1s -LL]

[1+—L]
L°+AL o

Assuming that the change in tension is small compared to the initial tension
XL

L
Ax = AL {cosh -1 (1 + 'LL) - =2 (B-7)

[o] 3
(L)y2+2iL
JLO LO

Equation (B-4) is used to eliminate AL from equation (B-7) so that an i

equation is obtained which relates the local horizontal translation of the

93
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cable to the translation of the upper end,

%
sinn, L—
0 -1 X
= +
Ax = Ax % % % cosh (1 Lo)
L—-sinn z—+l-coshlf—
(o) o o

(B-8)

A
LO
,(-gf—’ ) +2 ()
o] [»}

Equation (B-8) thus gives the mode shape of the perturbed cable, that is,

it is of the form given by equation (B-1) such that

b'4
sinn =2
¢ (L) = Lo cosn -t (1 + -LL)
J:.o x, xo 0
L—-sinh —-+l - cosh
(B-9)
<J—>= +2 ()

The first term in brackets is determined by the initial shape of the cable,
i.e., by the horizontal distance between the end of the cable on the floor
and the end of the cable attached to the model.
It is possible to find a simple approximation to equation (B-9). Figure

B-2 shows that the second bracketed term in equation (B-9) is approximated
very closely by

L

o

O -1 L 5
= = (cosh (1 +4) - (B- 10)
% WL |
o} o]

&k
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_at the upper end of the cable where from equation (B-1)

Equation (B-9) can be further simplified by using the boundary condition

y : .
¢ (F2) =1 |
Lo :
Therefore
*o Xo X
== ginh — + 1 - cosh. —
L L L
0 0 o] 1 1
= = = (B-11)
sinh =2 =2
I'o l:'o
Thus the approximate mode shape is given by
: ;
1
¢ (iv-) == |& (8-12)

o] f __!O LO
I‘O

Substituting equation (B-12) into (B-2), the expression for the kinetic 5

energy becomes :

8 i
I

L
ke =3mak?® =2 [ L as (-13)
yo o O

The arc length is given by the relationships for a catenary

X
8 = L, sinh. g (B-14)

Therefore using equations (B-3) and (B-14) can be integrated. The result
can be expressed in terms of arc length as, noting that m 8, = o, the total

mass of the cable,




Lo’ the ratio of the horizontal component of the tension to the running mass
of the cable is found from the equation of the catenary (B-3) knowing the
initial end points of the cable. For the various hovering experiments the
typical height of the model (yo) was 80 feet and the horizontal distance of
the model from the point at which ﬁhe cable left the ground was 25 feet (xo)'
Substituting these values into equation (B~3) to determine L, and then using
equation (B-14) it is found that,

50 = 10.79
For values of EO of this magnitude which were typical of all of the hovering
experiments, equation (B-15) can be considerably simplified. For 50 greater
than about 6 as shown in Figure B-2 a very good approximation to the term
in brackets in equation (B=15) can be obtained and equation (B-15) can be

f approximated by

2 -1
2 -
KE=dm, (0% (B-16)
Sy ~ 1

The effective mass of the catenary is therefore

8
-22 -1

Be "B |3 (B-17)
s, -1

and is approximately one-half the actual mass of the catenary. The value




st

one-half was used in the dynamic stability analysis since the cable mass
is small relative to the mass of the vehicle, and a more refined treatment
was not considered justified.

Consequently, the inertia effects of the cable are considered to be
represented by a concentrated mass equal to one-half the actusl mass of
the cable supported (ECe) located at the attachment point of the cable.

The contributions of the cable to the acceleration terms in the ;
various equations of motion are

Horizontal Force

AXE =m, [&s+ z,0]

Lateral Force

- - - (13 - €

Y, =m [V - 2, §] (B-18) ,
Pitching Moment !
AM, =&, Za [us+ Z, 9] ]

[ 4
Rolling Moment

AL, =m Z, [-vs+ Z, 9]

The terms given by equations (B-18) are added to the dynamic stability
equations to include the effect of cable inertia.
In addition to these acceleration effects the weight of the cable

will produce forces and moments on the vehicle,
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Figure B-3 shows the geometry involved in estimating the contributions
of the cable weight to the equations of motion. It is assumed that the
cable is straight when looking forward, as shown in the figure. The
following notation is employed,

T = tension in cable at attachment point

Bx = initial slope of cable at attachment point
measured with respect to the vertical

Aax, Aﬂy = perturbations in cable slope due to angular
rotation of model.

The equilibrium forces applied to the model due to cable tension will

result in an initial pitch angle (91) so that

x; =T (Bx + ei)
Y, =0 (B-19)
Z =T

The equilibrium moments due to cable tension are
[

Mc='TZA5x
L =0
e
The perturbed forces and moments are

X, + 48X, = - (T+A'r)(9i + 8 +Bx+ABx)

Y, +AY, = (T +AT)(¢ +4B,)

o + A%, ) y (B-20)
M, +AM, = - (T +AT) 2, (8, +8 + B +08.)

Ly + 8L, = - (T +4T) 2, (¢ +48,)
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rsre i =g

The slope of the cable can be found by differentiation of equation
(B-3)

g = sinh L (B-2l)

The equation of the catenary gives Lo knowing the initlal position of the

cable, i.e., equation (B-3) is

y = L, (cosh LL -1) (B-3)
o

Inserting typical values from the tzovei*ing experiments
x, = 25 ft
¥, = 80 £t

Equation (B-3) gives

L, = 8.17 £t
consequently

x
== 3.07

o

[ 4

¥y
T = 9.79

o]

For these typical values the hyperbolic functions can be approximated by

X
L.
sinh -I-J‘-!-“é-é-e °
o
X
'LO
coshf—“é%e )
o .

therefore equations (_B-2l) and (B~3) can be approximated as

el A e e a




1=

LO
y=1, (ke °-1) (-23)

The slope given by equation (B-22) is related to the angle B, by

& < tan (90°- 8,) (B-24)

Since ax is a small angle

dy ~ 1
dx Bx
From equation (B-23)
- X
- L, (B-25)
Bx =2 e

Now to find the rate of change of ax with the movement of the end
of the cable, equation (B-23) can be expressed in terms of Bx as

B
(—=—) In
lsx

2
= (B-26)
sx

<

Differentiating equation (B-26), the rate of change of B, with x can be
found. y is constant in the differentiation since it is assumed that the

[ 4
upper end of the cable translates horizontally only. The result is

de l‘ (l = Bx)z
—xol) x (B-27)
dx yol 1n§—-- (1 -Sx)

X

Now from Figure B-3 it can be seen that

Ax = ZA i\:]




w

= g 1 s

Therefore equation (B-27) can be written

dﬂx 2, (1 - 9x)= (3-28)
——— T e B-
de Yy 2 . _

o/ in px (1 ’x>

Expressed in terms of the initial horizontal position of the cable
2

dex_Z. BX' (T -ax) lnﬁ; (-2
as x_ 2 2
o lna—x-(l-ﬂx)

Since B x is assumed to be small this result may be further approximated by

B, 1n 52-
Txx * (-30)
- — B-30
de %6 | 1n 3—2— -1

X
Using typical values

x = 25 £t Z, =9 ft
Y, = 80 £t

[}
Lo = 8.17

Equation (B-25) gives By

g =5.3°

X

and equation (B-30) gives

d8
X
3o = 0,049

This rate of change of the cable angle with vehicle attitude will enter

into the longitudinal equations of motion.




In the lateral case the analysis is considerably simpler since it is
assumed that the cable 1is vertical in the initial condition. Therefore,
the change in cable angle with rcll is a result of the appearance of a

component of the initial cable angle ax in the lateral plane. Thus from

Figure B-3
2,9
Aay = Dx X :
or ;
ag Za §
# = ﬂx x—o- (B"31)

For the typical case given above

—I:
Y 0.033

The variation in cable tension must now be evaluated. Since the cable
tension must lie along the direction of the cable and the vertical component

of cable tension is equal to the weight of the cable supported,

[ 4
T = %o
cos ﬂx
Therefore
w
§ -—"— s v 8, (-32)

3
X cos ax

and the initial tension in the cable, since Bx is a small angle is equal

to the weight of the cable T = Wé.
Therefore equations (B-19) can be written as

X, = - W, (B, +8)

Y =0 (B-19)
c

Z =W
c c
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The initial cable angle will produce a small inclination of the vehicle
in bovering equilibrium. With a buoyant force, §, , and a sling load
weight Wy , the complete equation for x force equilibrium would indicate
an initial pitch angle, 1i.e.,

(% 'wa.) ei "wé (si +Bx) =0

A
1 Fo = Wer =W,

Now the perturbation forces and moments can be evaluated by subtracting

equations (B-19) from equation (B-20) where

a8 -da‘a TaW
x ae _, c
4as
=
Aby “6
ag
ar X
AT = <= === 8
dﬁxd

The various derimatives are glven by equations (B-30), (B-31) and
(B-32).

Therefore

da8 a8
aT
ox, = - W, (l+-&-&‘-)9-£x—§’5(91+5x)9

® (B-33)
oy, =W, (L+3%) @
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as a
X ar X
M, = - W 2y g0 -2 G5 To Bs*B) ©

(B-33 Con't)
as
= - L
ALc wcz, (1+d¢) ]

daT X
Since dﬂx ~ Bx and i~ ax the second term in the horizontal force and

pitching moment expressions is small and may be neglected.
Thus the cable weight contributions to the equations of motion are

dax
'Wc(l+d—-é-) -]

Axc =
ag
Y, =W, (L+T%) ¢
(B-34)
By
AMC = - ch‘ (1 +a—9') 8
a
= - —
ALC chA (l + d ¢) ¢

where the cable angle derivatives are vgiven by equation (B-30) and (B-31).
These terms given by equations (B-3lL) taken with the acceleration terms
given by equation (B-18) thus constitute the cable contributions to the
equations of motion.

Since for the typical hovering equilibrium the sample calculation
prescnted above indicates that the derivatives 5._95 and gg-% are small com-
pared to 1 an average value equation to 0.04 was used for both of these
derivatives in the dynamic stability analysis.

It may also be noted that the cable effects described in this section
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give rise to position dependent forces, that is, a horizontal translation
of the vehicle gives rise to a translational force from the umbilical cable.

The size of this effect may be estimated by calculating the trans- |
lational frequency which would arise. That is for horizontal translation
the equation of motion is

' " a8,
(m + ﬂce) x + Wc Tx*" 0 (B-35)

where it has been assumed that the cable tension is equal to the weight

of the cable. Thus the natural frequency arising from this effect is from

equation (B-35)

: ma = wc :Bx 1
3 x v x

: (n * o)
; The the typical case described above

: ap ap

i _x_1 _x

For the low center of.grav-lty experiments,

m' = 9,13 slugs

and a typical cable weight 1ifted is 50 lbs, giving

o= 0.165 rad/sec
giving a period of 38 seconds which is considerably slower than the natural

dynamics of the vehicle indicating that the effects are small and may be

neglected.
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APPENDIX C

DETERMINATION OF AFROCRANE MODEL PHYSICAL PARAMETERS
AND NUMERICAL RESULTS OF DYNAMIC STABILITY ANALYSIS

This section describes the manner in which the buoyant force and
inertial properties of the AEROCRANE model were determined experimentally
and also presents the numerical values employed in the stability analysis
as well as the results. The calculated transient response characteristics
based on the numerical values given here are discussed elsewhere in this
report.

I.) Determination of Buoyant Force and Inertial Properties

Since the AEROCRANE model without sling load and umbilical cable
possessed an excess of buoyancy, the following technique was used to deter~
mine the buoyant force. The sling load was placed on a scale with the
model floating above supporting a length of umbilical cable, h,. The

scale reading is then related to the buoyant force by the following equation

(W, + Wy, + 0.61 h)] =8 + Fy (c-1)

where

weight of the basic model, lbs.

t ]
L}

= weight of sling load, lbs.

X
™
-

I

scale reading, lbs.

(7]
(]

buoyant force, 1lbs.

=
[
[}

length of umbilical cable supported, ft.

(=2
[}

AL s e
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The umbilical ceble weighs 0.61 1lbs. per ft. Table C-1 lists the values

of the buoyant force for various hovering runs determined in this fashion.
The aerodynamic thrust is determined from the equilibrium hovering altitude
for the specific flight. That is,

T= (Wo + Wg + 0.61 neq) - Fy (c-2)

where T is the aerodynamic thrust and neq is the measured equilibrium
altitude, and is also given in Table C-1, The values of thrust and
buoyant force liéted in Table II in the main body of this report were
determined by the above technique.

The moment of inertia of the model in piteh (equal in roll) was
determined measuring the natural frequency of the model oscillating in
pitch with the rotor not rotating. A weight was added at the bottom of
the model to increase the spacing between the center of buoyancy and the
center of gravity. The separation of the center of buoyancy and the center
of gravity provides a.restoring moment .and consequently produces a free
motion which is oscillatory in character. The restoring moment character-
istic was determined experimentally by hanging a weight at a blade root
and measuring the angular deflection of the model corresponding to this

applied moment. The equation of motion for the pitch oscillation is
I’§+Mae=o (c-3)

Consequently the natural frequency of the free motion is
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The measured natural frequency, w, , and the restoring moment gradient,
Mé, measured as described above were used to determine the moment of inertia
I’. Note that this procedure determines a moment of inertia which includes
the influende of accelerating the air mass adjacent to the vehicle (apparent
mass effects). The experimentally determined moment of inertia in pitch
(equal to that in roll because of symmetry) is listed in Table C-1 as well,
To obtain the configuration of runs 15 and 17 with a higher center of gravity
position a fifteen pound weight was added at the upper pole of the spherical
centerbody and this is reflected in an increased pitch inertia.

No direct measurement of the polar moment of inertisa, Iz’ is possible.
Consequently this value was calculated based on knowing the size, weight, and
location of all of the various components in the model. As a verification of
this procedure the moment of inertia in pitch, I’ was also calculated from
camponent contributions. The calculated value of I’ was within one percent
of the value determined from the ocillation tests and therefore the calculated
value of Iz is assumed,to be within one percent of the actual value.

Comparison of the calculated center of gravity position and the spacing
between the center of gravity and center of buoyancy which can be determined
from the measured restoring moment characteristics indicated that the center
of buoyancy was 0.39 ft. above the plane of the rotor (the geometrical center
of the centerbody if the centerbody is a perfect sphere) indicating a small
distortion of the centerbody under load. This small distance was neglected
in the analysis. That is, the center of buoyancy was assumed to lie in the

plane of the rotor.
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II.) Dynamic Stability Analysis
Using the various physical parameters of the model given in Table C-1

and the equations of motion presented in the main body of the report, the
numerical values for the various coefficients in the equations of motion
were calculated for runs 11, 15, 17 and 36. These values are presented
in Figures C-1 through C-4. It should be noted that as can be seen by
comparison of the numerical values of the elements of the damping and control
matrices with the literal expressions given on pages 35 and 37 that the rotor
inplane forces were neglected. Previous analyses have shown that these
terms have only a minor effect on the dynamic stability and response
characteristics in hover.

Table C-2 presents the eigenvalues calculated for these four hovering
cases. Also presented are the corresponding period and damping ratio as
well as an identification of each mode. The dynamic motion of the AEROCRANE
model in hovering in the configuration flown is characterized by five
oscillatory modes. Three of these modes are associated with the vehicle
and two with the sling load., One of the basic modes of the vehicle is a
fast motion that is well damped with a period of the order of 1.8 seconds
and a damping ratio of the order of 0.5. This is basically an angular
motion with its character determined primarily by the aerodynamic damping
of the rotor and the gyroscopic moments. There is a lightly damped mode
with a period of the order of 11 seconds and a damping ratio of 0.1 or
less. This is the mode which dominates the measured transient response
characteristics owing to its small damping ratio. As discussed in Ref-
erence 1, this mode may be described as a retrograde mode, that is, as

a result of the polar symmetry of the vehicle this transient motion is in
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pplcdasisrth

fact a circling motion of the vehicle and in this mode the circling takes
place opposite to the direction of rotor rotation. The remaining vehicle
mode has a period of the order of 20 to 30 seconds and is well damped
with a damping ratio of the order of 0.7. It can be characterized as
an advancing mode as it corresponds to circling in the direction of rotor
rotation. Owing to its large damping ratio the presence of this mode is
not apparent in the measured or calculated transient.responses. The
remaining two modes are associated with the sling load motion in two
directions. The period of these motion is of the order of 4 seconds
and the damping ratios are very small as the sling load damping was
neglected. The isolated sling load period is 4.69 seconds indicating
that there is some coupling with the vehicle motion.

Comparison of the calculated transient response based on these
numerical values with the experimentally measured transient response

is discussed in the main body of the report.
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TABLE C-1

PHYSICAL PARAMETERS OF AEROCRANE MODEL

RUN NO. ‘ W, Fa T Wey W,
1bs. 1bs. 1bs. 1bs. 1bs.
1n 177 210 89 67 55
36 177 201 6k 51 37
15 192 206 52 20 L6
17 192 199 8L 42 kg
RUN NO, I I, r, Za ZeL 9!
slug £t.2 | slug ft.3|  st. t. ft. rad/sec
11 521 653 2.71 9.0 18 2.72
36 521 653 2.71 9.0 18 2.92
15 576 653 1.83 9.9 18 3.00
17 576 653 1.83 9.9 18 2.96

m, = 3.63 slugs.




TABLE-C-2

CALCULATED EIGENVALUES FOR HOVERING RUNS

RUN NO. 11.

EIGENVALUES PERIOD DAMPING MODE
sec L sec. RATIO

-2,275 £ 3.5751 1.76 0.536 FAST ANGULAR RESPONSE
-0.086 £ 0.6681 9.1 0.128 LIGHTLY DAMPED RETROGRADE
-0.248 £ 0.272i 23.10 0.67h4 WELL DAMPED ADVANCING
-0.035 £ 1.6151 3.89 0.022 SLING LOAD
0,093 £ 1.4381 4.37 0.065 SLING LOAD

RUN NO. 15.
-2.096 £ 3.3711 1.86 0.528 FAST ANGULAR RESPONSE
-0.013 £ 0.L841 12.98 0.027 LIGHTLY DAMPED RETROGRADE
-0.208 £ 0.1931 32.55 0.733 WELL DAMPED ADVANCING
-0.00% + 1.k113 L.u4s 0.003 SLING LOAD
-0.029 £ 1.3651 4.60 0.021 SLING LOAD

RUN NO. 17,

[
~2.300 £ 3.34Li 1.88 0.567 FAST ANGULAR RESPONSE
-0.008 £ 0.5931 10.60 0.013 LIGHTLY DAMPED RETROGRADE
~0.24k% £ 0.3311 18.98 0.59% WELL DAMPED ADVANCING
-0.,013 £ 1.5041 4.18 0.009 SLING LQAD
«0.069 = 1.4001 Lk.49 0.049 SLING LOAD
NO, 36.
«2.361 £ 3.834i 1.64 0.524 FAST ANGULAR RESPONSE
0,051 £ 0.56L41 11.14 0.090 LIGHTLY DAMPED RETROGRADE
-0.229 £ 0.2101 29.90 0.737 WELL DAMPED ADVANCING
-0.015 £ 1.5381 4,08 0.010 SLING LOAD
-0,069 £ 1.L4151 L L 0.049 SLING LOAD
15
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Figure C-2: Numerical Values of Matrix Elements for Run No. 17.
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Figure C-4: Numerical Values of Matrix Elements for Run No. 15.
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'APPENDIX D

MODIFICATION OF TRIM EQUATIONS TO INCLUDE
SLING LOAD AND UMBILICAL CABLE

The equa.tion’s for equilibrium flight formulated in the text of the
report do not include the sling load or the umbilical cable., These effects
can be incorporated in the following fashion.

Since the aerodynamic forces on the sling load are negligible owing
to the high density of the load and the low veloclty of the experiments
the equilibrum flight orientation of the sling load cable is vertical as
can be seen from the steady~state solutions of the latter two of equations
(65). Thus

o = -0

=9
Consequently, as seen from the first four of equations (65) the sling load
adds to the weight in the two force equations and produces a moment
about the center of gravity of the vehicle. If it is assumed that the
angle that the umbilital cable makes with the vertical is negligible in
forward flight, the umbilical also appears in the equilibrium equations in
a similar fashion to the sling load, as may be seen from equations (67).
The contributions of the umbilical from equation (67) and the sling load,
from equation (65) to the force balance equations given by equation (8)
are

horizontal force

(-mg ~ Wc) sin 0 cos ¢
side force

(mg + Wc) sin ¢
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vertical force

(ng + Wc) cos ¢ cos ©

Therefore for the force balance equationsg to include the effects of the
sling load and the umbilical cable, the term W may be interpreted as

W= Wo +mg+W e
That is, it is the total weight supported by the buoyant force and aerodynamic
thrust., This quantity W is referred to as the gross weight elsewhere in the
report.

For inclusion in the moment equilibrﬁm both of these weights act at
their attachment point a distance Z, below the center of gravity of the
vehicle. '

Thus to equations (13), the following terms must be added

pitch moment

Z, (mg + Wc] sin 6 cos ¢
roll moment

[}
-Z, [mg + Wc] sin ¢

Thus to summarize, to include the effects of the umbilical cable and the
sling load in the trim calculations, the term W can be interpreted in the
force balance equations (equation 8) as including the weight of the sling
load and the umbilical cable. The moment equilibrium equations (equation
16) must be modified to include the above terms. The simpler form given

by equation (18) can not be used.
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